Jell, Holocene sediments of Wistari Reef: towards a global quantification of coral reef related neritic sedimentation in the Holocene, Palaeogeogr. Palaeoclimatol. Palaeoecol. 175 (2001) 173 – 184. [22] A. Vecsei, W.H. Berger, Increase of atmospheric CO2 during deglaciation: constraints on the coral reef hypothesis from patterns of deposition, Glob. Biogeochem. Cycles 18 (2004), doi:10.1029/2003GB002147. [23] A.J. Ridgwell, A.J. Watson, M.A. Maslin, J.O. Kaplan, Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum, Paleoceanography 18 (2003), doi:10.1029/2003PA000893. [24] T.J. Crowley, Ice-age terrestrial carbon revisited, Glob. Biogeochem. Cycles 9 (1995) 377 – 389. [25] M.A. Maslin, E. Thomas, Balancing the deglacial global carbon budget: the hydrate factor, Quat. Sci. Rev. 22 (2003) 1729 – 1736. [26] J.O. Kaplan, I.C. Prentice, W. Knorr, P.J. Valdes, Modelling the dynamics of terrestrial carbon storage since the Last Glacial Maximum, Geophys. Res. Lett. 29 (2002) 2074, doi:10.1029/2002GL015230. [27] J.M. Adams, et al., Increases in terrestrial carbon storage from the Last Glacial Maximum to the present, Nature 348 (1990) 711 – 714. [28] D. Archer, A. Winguth, D. Lea, N. Mahowald, What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys. 38 (2000) 159 – 189. [29] W.S. Broecker, T.-H. Peng, The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change, Glob. Biogeochem. Cycles 1 (1987) 15 – 29. [30] W.S. Broecker, J. Lynch-Stirglitz, E. Clark, I. Hajdas, G. Bonani, What caused the atmosphere’s CO2 content to rise during the last 8000 years?, Geochem. Geophys. Geosyst. 2 (2001) (2001GC000177). 313 [31] F. Joos, et al., Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum, Glob. Biogeochem. Cycles 18 (2004), doi:10.1029/ 2003GB002156. [32] V. Brovkin, et al., Carbon cycle, carbon cycle, vegetation and climate dynamics in the Holocene: experiments with the CLIMBER-2 Model, Glob. Biogeochem. Cycles 16 (2002), doi:10.1029/2001GB001662. [33] A. Indermqhle, et al., Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature 398 (1999) 121 – 126. [34] D. Archer, J.L. Morford, S.R. Emerson, A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains, Glob. Biogeochem. Cycles 16 (2002), doi:10.1029/2000GB001288. [35] B. Hales, Respiration, dissolution, and the lysocline, Paleoceaongraphy 18 (2003), doi:10.1029/2003PA000915. [36] D. Archer, E. Maier-Reimer, Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature 367 (1994) 260 – 263. [37] A.J. Ridgwell, A.J. Watson, D.E. Archer, Modelling the response of the oceanic Si inventory to perturbation, and consequences for atmospheric CO2, Glob. Biogeochem. Cycles 16 (2002) 1071, doi:10.1029/2002GB001877. [38] D.M. Sigman, D.C. McCorkle, W.R. Martin, The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes, Glob. Biogeochem. Cycles 12 (1998) 409 – 427. [39] R.E. Zeebe, P. Westbroek, A simple model for the CaCO3 saturation state of the ocean: the bStrangelove,Q the bNeritan,Q and the bCretanQ Ocean, Geochem. Geophys. Geosyst. 4 (2003), doi:10.1029/2003GC000538. [40] R. Francois, et al., Glob. Biogeochem. Cycles 16 (2002), doi:10.1029/2001GB001722. [41] U. Passow, Switching perspectives: do mineral fluxes determine particulate organic carbon fluxes or vice versa?, Geochem. Geophys. Geosyst. 5 (2004), doi:10.1029/2003 GC000670. [42] J.P. Grotzinger, A.H. Knoll, Anomalous carbonate precipitates: is the Precambrian the key to the Permian?, Palaios 10 (1995) 578 – 596. [43] L.J. Walker, et al., Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings, J. Geol. 110 (2002) 75 – 87. [44] R.E. Zeebe, D. Wolf-Gladrow, CO2 in seawater: equilibrium, kinetics, isotopes, Elsevier Oceanographic Series, vol. 65, Elsevier, New York, 2001. [45] D.L. Royer, et al., CO2 as a primary driver of Phanerozoic climate, GSA Today 14 (2004) 4 – 10. [46] A.J. Ridgwell, A mid Mesozoic revolution in the regulation of ocean chemistry, Mar. Geol. (in press). [47] N.H. Sleep, K. Zahnle, Carbon dioxide cycling and implications for climate on ancient Earth, J. Geophys. Res. 106 (2001) 1373 – 1399. [48] G. Shields, J. Veizer, Precambrian marine carbonate isotope database: version 1.1, Geochem. Geophys. Geosyst. 3 (2002), doi:10.1029/2001GC000266. 314 A. Ridgwell, R.E. Zeebe / Earth and Planetary Science Letters 234 (2005) 299–315 [49] J.P. Grotzinger, N.P. James, Precambrian carbonates; evolution of understanding, Carbonate Sedimentology and Diagenesis in the Evolving Precambrian World, SEPM, 2000. [50] J.P. Grotzinger, J.F. Kasting, New constraints on Precambrian ocean composition, J. Geol. 101 (1993) 235 – 243. [51] D.J. Des Marais, Isotopic evolution of the biogeochemical carbon cycle during the Precambrian, Rev. Mineral. Geochem. 43 (2001) 555 – 578. [52] R.A. Wood, J.P. Grotzinger, J.A.D. Dickson, Proterozoic modular biomineralized metazoan from the Nama Group, Namibia, Science 296 (2002) 2383 – 2386. [53] R.E. Martin, Cyclic and secular variation in microfossil biomineralization—clues to the biogeochemical evolution of Phanerozoic oceans, Glob. Planet. Change 11 (1995) 1 – 23. [54] B.N. Opdyke, B.H. Wilkinson, Carbonate mineral saturation state and cratonic limestone accumulation, Am. J. Sci. 293 (1993) 217 – 234. [55] T.J. Algeo, K.B. Seslavinsky, The Paleozoic world—continental flooding, hypsometry, and sealevel, Am. J. Sci. 295 (1995) 787 – 822. [56] T. Volk, Sensitivity of climate and atmospheric CO2 to deepocean and shallow-ocean carbonate burial, Nature 337 (1989) 637 – 640. [57] J. Horita, et al., Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporates, Geochim. Cosmochim. Acta 66 (2002) 3733 – 3756. [58] T.K. Lowenstein, et al., Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions, Science 294 (2002) 1086 – 1088. [59] T.K. Lowenstein, et al., Secular variation in seawater chemistry and the origin of calcium chloride basinal brines, Geology 31 (2003) 857 – 860. [60] K.J. Davis, et al., The role of Mg2+ as an impurity in calcite growth, Science 290 (2000) 1134 – 1137. [61] R.E. Zeebe, A. Sanyal, Comparison of two potential strategies of planktonic foraminifera for house building: Mg2+ or H+ removal?, Geochim. Cosmochim. Acta 66 (2002) 1159 – 1169. [62] S.M. Stanley, L.A. Hardie, Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry, Palaeogeogr. Palaeoclimatol. Palaeoecol. 144 (1998) 3 – 19. [63] S.M. Stanley, L.A. Hardie, Hypercalcification: paleontology link plate tectonics and geochemistry to sedimentology, GSA Today 9 (1999) 1 – 7. [64] P.A. Sandberg, An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy, Nature 305 (1983) 19 – 22. [65] R. Riding, Phanerozoic patterns of marine CaCO3 precipitation, Naturwissenschaften 80 (1993) 513 – 516. [66] D.Y. Sumner, J.P. Grotzinger, Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?, Geology 24 (1996) 119 – 122. [67] M.B. Hart, The search for the origin of the planktic Foraminifera, J. Geol. Soc. 160 (2003) 341 – 343. [68] S.K. Boss, B.H. Wilkinson, Planktogenic eustatic control on cratonic oceanic carbonate accumulation, J. Geol. 99 (1991) 497 – 513. [69] S.T. Brennan, T.K. Lowenstein, J. Horita, Seawater chemistry and the advent of biocalcification, Geology 32 (2004) 473 – 476. [70] J.L. Kirschivink, Late Proterozoic low-latitude global glaciation: the snowball Earth, in: J.W. Schopf, C. Klein (Eds.), The Proterozoic Biosphere, Cambridge University Press, Cambridge, 1992, pp. 51 – 52. [71] A.J. Ridgwell, M.J. Kennedy, K. Caldeira, Carbonate deposition, climate stability, and Neoproterozoic ice ages, Science 302 (2003) 859 – 862. [72] A.J. Ridgwell, M.J. Kennedy, Secular changes in the importance of neritic carbonate deposition as a control on the magnitude and stability of Neoproterozoic ice ages, in: G. Jenkins, et al. (Eds.), The Extreme Proterozoic: Geology, Geochemistry, and Climate, Geophysical Monograph Series, vol. 146, American Geophysical Union, Washington, DC, 2004. [73] P.F. Hoffman, A.J. Kaufman, G.P. Halverson, D.P. Schrag, A Neoproterozoic snowball earth, Science 281 (1998) 1342 – 1346. [74] P.F. Hoffman, D.P. Schrag, The snowball Earth hypothesis: testing the limits of global change, Terra Nova 14 (2002) 129 – 155. [75] K. Caldeira, Continental–pelagic carbonate partitioning and the global carbonate-silicate cycle, Geology 19 (1991) 204 – 206. [76] J.M. Edmond, Y. Huh, Non-steady state carbonate recycling and implications for the evolution of atmospheric pCO2, Earth Planet. Sci. Lett. 216 (2003) 125 – 139. [77] D.P. Schrag, Control of atmospheric CO2 and climate through Earth history, Geochim. Cosmochim. Acta 66 (2002) A688. [78] K. Caldeira, M.R. Rampino, Aftermath of the end-cretaceous mass extinction—possible biogeochemical stabilization of the carbon-cycle and climate, Paleoceanography 8 (1993) 515 – 525. [79] D. Archer, H. Kheshgi, E. Maier-Reimer, Multiple timescales for neutralization of fossil fuel CO2, Glob. Biogeochem. Cycles 12 (1998) 259. [80] K. Caldeira, M.E. Wickett, Anthropogenic carbon and ocean pH, Nature 425 (2003) 365. [81] C.D. Keeling, T.P. Whorf, Atmospheric CO2 records from sites in the SIO air sampling network, Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA, 2004, (http:// cdiac.esd.ornl.gov/trends/co2/sio-mlo.htm). [82] T.M. Lenton, Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model, Tellus 52 (2000) 1159 – 1188. [83] J.A. Kleypas, et al., Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science 284 (1999) 118. A. Ridgwell, R.E. Zeebe / Earth and Planetary Science Letters 234 (2005) 299–315 [84] C. Langdon, et al., Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef, Glob. Biogeochem. Cycles 14 (2000) 639 – 654. [85] N. Leclercq, J.P. Gattuso, J. Jaubert, CO2 partial pressure controls the calcification rate of a coral community, Glob. Chang. Biol. 6 (2000) 329 – 334. [86] A.T. Marshall, P.L. Clode, Effect of increased calcium concentration in sea water on calcification and photosynthesis in the scleractinian coral Galaxea fascicularis, J. Exp. Biol. 205 (2002) 2107 – 2113. [87] T.P. Hughes, et al., Climate change, human impacts, and the resilience of coral reefs, Science 301 (2003) 929 – 933. [88] J.A. Kleypas, R.W. Buddemeier, J.-P. Gattuso, Int. J. Earth Sci. 90 (2001) 426. [89] S. Barker, H. Elderfield, Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2, Science 297 (2002) 833. [90] U. Riebesell, I. Zondervan, B. Rost, P.D. Tortell, R.E. Zeebe, F.M.M. Morel, Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature 407 (2000) 364 – 367. [91] I. Zondervan, R.E. Zeebe, B. Rost, U. Riebesell, Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2, Glob. Biogeochem. Cycles 15 (2001) 507 – 516. [92] R.A. Armstrong, C. Lee, J.I. Hedges, S. Honjo, S.G. Wakeham, A new, mechanistic model for organic carbon fluxes in the ocean: based on the quantitative association of POC with ballast minerals, Deep-Sea Res., Part II 49 (2002) 219 – 236. [93] C. Klaas, D.E. Archer, Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio, Glob. Biogeochem. Cycles 16 (2002), doi:10.1029/2001GB001765. [94] A.J. Ridgwell, An end to the drain ratioT reign?, Geochem. Geophys. Geosyst. 4 (2003), doi:10.1029/2003GC000512. [95] S. Barker, J.A. Higgins, H. Elderfield, The future of the carbon cycle: review, calcification response, ballast and feedback on atmospheric CO2, Philos. Trans. R. Soc. A 361 (2003) 1977. [96] C.L. Sabine, et al., The oceanic sink for anthropogenic CO2, Science 305 (2004) 367 – 371. [97] G.R. Dickens, Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor, EPSL 213 (2003) 169 – 183. [98] S. Bains, R.D. Norris, R.M. Corfield, K.L. Faul, Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback, Nature 407 (2000) 171 – 174. 315 [99] A.C. Kurtz, et al., Early Cenozoic decoupling of the global carbon and sulfur cycles, Paleoceanography 18 (2003), doi:10.1029/2003PA000908. [100] S.J. Zhong, A. Mucci, Calcite precipitation in seawater using a constant addition technique—a new overall reaction kinetic expression, Geochim. Cosmochim. Acta 57 (1993) 1409 – 1417. [101] L.M. Walter, J.W. Morse, The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study, Geochim. Cosmochim. Acta 49 (1985) 1503 – 1513. [102] W.S. Broecker, The oceanic CaCO3 cycle, in: H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry, Elsevier, 2003, pp. 529 – 549. [103] B.U. Haq, et al., Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in: C.K. Wilgus, et al. (Eds.), Sealevel-changes; An Integrated Approach, Special Publication-Society of Economic Paleontologists and Mineralogists, vol. 42, 1988, pp. 71 – 108. [104] T. Tyrrell, Submission to the Royal Society working group on Ocean acidification, personal communication. Andy Ridgwell is an Assistant Professor in the Department of Earth and Ocean Sciences of the University of British Columbia, and has the fancy title of dCanada Research Chair in Global Process ModellingT. Although in practice spending most of his time tending to the every need of 5 cats, his research addresses fundamental questions surrounding the past and future controls on atmospheric CO2 and the role of feedbacks in the climate system. His weapon of choice in this endeavor is an Earth System Climate Model. Richard Zeebe is an Assistant Professor at the Department of Oceanography at the University of Hawaii. His research focuses on the global carbon cycle, biogeochemistry and paleoceanography. His interest ranges from physico-chemical properties of molecules and the biogeochemistry of foraminifera to the scale of the global ocean. Together with Dieter Wolf-Gladrow he has published a book in 2001 on the CO2 chemistry in seawater which has been referred to as dthe CO2 survival kitT.

Do you have a similar assignment and would want someone to complete it for you? Click on the ORDER NOW option to get instant services at essayloop.com. We assure you of a well written and plagiarism free papers delivered within your specified deadline.